
Augmenting Static Visualizations with PapARVis Designer
Zhutian Chen1, Wai Tong1, Qianwen Wang1, Benjamin Bach2, Huamin Qu1

1 Hong Kong University of Science and Technology, Hong Kong, 2 University of Edinburgh, UK
{zhutian.chen, wtong, qwangbb}@connect.ust.uk, bbach@ed.ac.uk, huamin@ust.hk

Figure 1. Augmenting static visualizations can leverage the best of both physical and digital worlds: a) a data journalism uses an augmented static
visualization to extend the space of the newspaper that is limited by the banner; b) a designer uses AR to update the outdated wall-sized timeline
without recreating it; c) a tourist overlays the trajectories data on a public map in AR to see his/her moving pattern.

ABSTRACT
This paper presents an authoring environment for augmenting
static visualizations with virtual content in augmented reality.
Augmenting static visualizations can leverage the best of both
physical and digital worlds, but its creation currently involves
different tools and devices, without any means to explicitly
design and debug both static and virtual content simultane-
ously. To address these issues, we design an environment that
seamlessly integrates all steps of a design and deployment
workflow through its main features: i) an extension to Vega,
ii) a preview, and iii) debug hints that facilitate valid combina-
tions of static and augmented content. We inform our design
through a design space with four ways to augment static vi-
sualizations. We demonstrate the expressiveness of our tool
through examples, including books, posters, projections, wall-
sized visualizations. A user study shows high user satisfaction
of our environment and confirms that participants can create
augmented visualizations in an average of 4.63 minutes.

Author Keywords
Visualization in Augmented Reality; Augmented Static
Visualization; Data Visualization Authoring.

CCS Concepts
•Human-centered computing → Visualization systems
and tools;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

INTRODUCTION
Data visualizations—in the form of posters, newspapers, sci-
entific reports, on public displays as well as slideshows and
mobile screens—become increasingly more widespread. In
most of these cases, visualizations are printed on paper, which,
due to its extremely low-tech and tangibility, makes it very
simple to create, distribute, view, and engage with the visual-
ization content: they can be viewed in-situ without requiring
any specific hardware; viewers can freely engage with them
through touch, pen and annotation, and sharing thoughts and
discussions in collaborative settings. However, a drawback of
paper visualizations is that these visualizations are static, i.e.,
the displayed information is limited in both space and time.

Augmented Reality (AR) allows for dynamic and interactive
content, by adding an extra dynamic display layer onto an
existing visualization. This combination can complement the
static visualizations through extra data (Figure 1a), update
outdated data (Figure 1b), highlight data (Figure 1c), show de-
tails, protect privacy, provide 3D content and interactivity [22],
etc. We envision such kind of augmented static visualizations
being used for public display (e.g., information board, art-
works in exhibitions), education (e.g., textbook), and creative
products (e.g., giftcards), etc.

At the same time, it is demanding to create combinations and
hybrids of static and virtual AR-visualizations since a couple
of criteria must be met to provide for a seamless and consistent
integration. We can define these criteria of consistency (C1-
C3) as follows:

• C1: Graphical consistency refers to equal graphical styles
between static and virtual content, e.g., fonts, colors.
• C2: Readability requires to provide for correct interpre-

tation of visualizations across both media, e.g., aligning

https://doi.org/10.1145/3313831.XXXXXXX

related (equal) graphical elements and labels, axes, and lay-
outs; avoid visual clutter and overlap of graphical elements.
• C3: Validity of visual encodings, e.g., values of the same

visual variables mean the same data.

Support for maintaining these crucial characteristics is specif-
ically more problematic when design iterations are required,
e.g., trying different layouts, exploring the available space
in AR. Without an integrated authoring approach, the design
process is not just technically tedious, i.e., switching between
authoring tools and environments, but can lead to inconsis-
tent visualizations if a designer does not manage to manually
account for consistency (C1-C3).

To address C1-C3, this paper introduces PapARVis Designer,
an authoring environment to create augmented static visual-
izations. The design of PapARVis Designer (Sec.5) is based
on a design space (Sec.3) that defines possible and valid ways
of combining static and virtual content. Similar to DXR [21],
PapARVis Designer delivers an extension to the Vega gram-
mar [18], leveraging its simplicity and expressiveness to spec-
ify 2D visualizations. PapARVis Designer enables designers
to create static and 2D virtual visualizations based on the same
specification (C1,C3) and to deploy everything with one click.
To facilitate design and avoid invalid combinations, we in-
cluded two bespoke features into PapARVis Designer: first,
AR-preview gives a preview of the augmented static visualiza-
tion that allows designers to view their designs on the desktop
environment, thus assuring Readability and reducing switch-
ing between devices (C2); second, Validator automatically
validates a design based on our design space and provides
guidelines for correction to ensure consistency of the visual
encodings between the static and virtual visualizations (C3).

To demonstrate the expressiveness of PapARVis Designer, we
provide an exemplary gallery of 13 augmented static visualiza-
tions (Figure 1 and Figure 7), each varying in data type, chart
type, media, and purpose. A controlled user study with 12
visualization designers but without further experience in AR
development suggests the overall usability of PapARVis De-
signer and the two main features AR-preview and Validator. Pa-
pARVis Designer is available at https://github.com/PapARVis.

RELATED WORK
This section overviews prior research on AR visualization,
augmenting physical documents, and visualization tools.

AR Visualization
Willett et al. [27] introduced embedded data representations, a
conceptual framework to unify the research on visualization
systems that connect to the physical world. As an important
method to blend digital data and the physical world, AR has
attracted the attention of the visualization community. Bene-
fits of visualizing data in AR have been reported by previous
research. First, for example, AR can visualize data in the
physical space to facilitate certain visual explorations and col-
laborative analysis. Butscher et al. [6] presented ART, an
AR collaborative analysis tool, and reported that ART could
facilitate communication and coordination between collabo-
rators, since the interaction is grounded in the physical world.
Besides, AR can augment physical objects with rich digital

information, enabling situated analytics. Zhao et al. [30] de-
veloped a mobile AR system to support on-site analysis of
co-authoring patterns of researchers. SiteLens [19] visual-
izes relevant data in the 3D physical context for urban site
visits. ElSayed et al. [10] developed an AR system to help
customers filtering, finding, and ranking products during shop-
ping. Moreover, AR has been used to present visualizations
for communication purposes [7] as it has the potential to en-
gage audiences better. In summary, previous work shows that
AR can connect virtual data to physical spaces, augment real
objects with rich information, and even engage users. We draw
on this line of work and attempt to augment static visualiza-
tions with virtual visualizations in AR, harnessing the best of
both physical and digital media.

Augmenting Physical Documents
A variety of AR systems (e.g., projector-based [26], handled-
based [3], and HMD-based [13]) have been proposed to aug-
ment physical documents by providing additional functionality
and content. For example, HoloDoc [13], a mixed reality sys-
tem based on HoloLens, augments physical artifacts to allow
users to take notes and look up words. Although these systems
augment physical documents with rich virtual content, they
are not designed for augmenting static visualizations, which
requires a high level of information integrity, visual style con-
sistency, and spatial alignment between the static and virtual
content. Recently, initial explorations have been made to aug-
ment static visualizations: Kim et al. [22] presented VisAR,
an AR prototype system that provides interactive functions to
static visualizations. Differently, we aim to use AR to extend
static visualizations with additional data.

Visualization Authoring Tools
A number of authoring tools have been proposed to facili-
tate the creation of visualizations in desktop and AR environ-
ments. Prior work on creating desktop visualization ranges
from highly expressive programming toolkits to easy-to-use
WIMP UI tools. Programming toolkits (e.g., D3 [5], Proto-
Vis [4]) provide strong expressiveness and support flexible
visualization designs but require a high level of programming
skills. Instead, WIMP UI systems (e.g., Lyra [16], iVisDe-
signer [15], and Voyager [28]) lower the barrier of creating
visualizations by providing interactive functions to allow users
to design visualizations via drag and drop, but compromising
the flexibility. To strike a balance between expressivity and
simplicity, Vega [18] and Vega-Lite [17] enable users to define
visualizations with a concise declarative specification in JSON
format. Overall, these systems focus on 2D visualizations on
desktop platforms but cannot create visualizations in AR.

On the other hand, tools have recently been proposed for
creating visualizations in AR environments. For example,
MARVisT [7] is a touch-based creativity support tool to as-
sist general users in creating AR-based glyph visualizations.
Programmatic toolkits have presented to support more flexible
visualizations; DXR [21] and IATK [9] are fast prototyping
toolkits, that provide both programmatic and graphical user
interfaces to help designers create immersive visualizations.

https://github.com/PapARVis

These systems mainly focus on 3D visualizations, thus requir-
ing knowledge of 3D computer graphics (e.g., shader, meshes,
and 3D camera).

Most important, these tools do not envision extending any
existing static visualization. First, none of these tools can
create both static and virtual visualizations simultaneously,
thus requiring the designer to switch between tools frequently.
Second, none of these tools can help designer to ensure the con-
sistency of data, visual styles, and positions between the static
and virtual visualization. Our PapARVis Designer presents
an authoring environment to create visualizations crossing
between reality and virtuality.

DESIGN SPACE
This section discusses the concept of validity for augmented
static visualizations, explores the design space for spatially
aligning static and virtual content, and derives a set of design
goals for our authoring environment.

What kind of augmented static visualizations is valid?
In this work, we distinguish between these three terms: i)
static visualizations (Vs), which are static but can be in differ-
ent media (e.g., be printed, projected, and displayed in digital
screens), ii) virtual visualizations (Vv), which are displayed
in AR (e.g., the virtual timeline in Figure 1b), and iii) aug-
mented static visualizations (Var), which combine both static
and virtual visualizations in AR.

a b

Figure 2. The validity of augmented static visualizations: a) A valid
augmented bar chart; b) An invalid augmented pie chart.

To maintain perceptual effectiveness, we propose that the vi-
sual encodings in Vs and Vv should be consistent with respect
to C3, i.e., the same visual values mean the same data. Other-
wise, the visualization design is invalid. For example, Figure 2
shows that when augmenting a Vs with additional data items,
a bar chart visualization is valid; a pie chart visualization is
invalid since the arc length of the virtual pie chart leads to
inconsistent mappings (C3).

How can a static visualization be augmented by AR?
As mentioned in the previous section, The design space of
augmented static visualizations can be determined by two
dimensions: i) the visual encodings of Vs and Vv, which can
be different or the same; and ii) the composition of Vs and
Vv, which can be an integrated view or two separate views.
We use these two dimensions to construct a design space
(Figure 3), which outlines four ways to augment Vs:

• Extended View (Same visual encoding + Integrated com-
position). Figure 3a presents the scenario that Vv has the
same visual encodings with Vs and is integrated with Vs in
a single view. Augmentation Point: In this augmentation
method, Vs and Vv are actually the same visualization (i.e.,

4

a

c

b

d

Visual Encoding
Same Different

Co
m

po
si

tio
n In

te
gr

at
ed

Se
pa

ra
te

Figure 3. Four ways to augment static visualizations using AR: a) Ex-
tended View; b) Composite View; c) Small Multiple; d) Multiple View.

use the same visual encodings in the same view) but differ-
ent in data. The designer can extend Vs with additional data,
allowing a static visualization to present continually updated
data or to provide details on demand. Validity: A particular
validation point of this method is that the designer should
consider the data dependency between Vs and Vv. Not all Vs

can be augmented in this way. For example, a pie chart V pie
s

cannot be augmented with more data items through V pie
v .

Specifically, V pie
v can only match the “updated” V pie

s but not
V pie

s itself. Thus, V pie
v will hinder the perception of V pie

s . In
other words, using this method, the designer must ensure
V pie

s will not change when the new data is appended.
• Composite View (Different visual encoding + Integrated

composition). Figure 3b depicts the condition when Vv
has different visual encodings with Vs and is integrated
with Vs. Augmentation Point: When augmenting Vs in this
way, the designer can visualize another dataset using Vv
that complements Vs, or can present extra data attributes
of the dataset of Vs. Validity: Given Vv has different visual
encodings from Vs, the designer does not need to concern
the data dependency between them and should focus on
general design issues, e.g., occlusions between Vv and Vs.
• Small Multiple (Same visual encoding + Separate com-

position). Figure 3c shows the scenario where Vv has the
same visual encodings with Vs and is displayed as a sepa-
rate view. Augmentation Point: Vv can be used to present
other datasets in the same visual encodings of Vs. Gener-
ally, the result of this method is a small multiple. Validity:
The augmentation will always be valid as Vv is displayed
separately from Vs. However, the designers should consider
whether the visual encodings fits for different datasets, i.e.,
the scalability issue.
• Multiple Views (Different visual encoding + Separate

composition). Figure 3d demonstrates the case that Vv has
different visual encodings with Vs and is displayed sepa-
rately from Vs. Augmentation Point: Choosing this aug-
mentation allows the designer to use AR to extend Vs to a
multiple view (e.g., a dashboard), presenting different per-
spective of the data behind Vs, or use Vv to visualize new
datasets along with Vs that yields deeper insights into the
data. Validity: This method can always ensure valid AR

visualizations and has the most flexibility as Vs and Vv are
completely independent (both in data and visually).

In summary, in our design space, Vs can be augmented in four
different ways with different augmentation points. Among
these four augmentation methods, Extended View is the most
strict one, as in which Vs and Vv are highly correlated; Mul-
tiple View is the most flexible one, as in which Vs and Vv are
completely independent of each other.

Design Goals
To create augmented static visualizations, we conceive our
authoring environment to accomplish three main goals:

G1: Integrate the visualization design in one tool—To as-
sure graphical consistency (C1) and validity (C3) between Vs
and Vv, we aim to integrate Vs and Vv into one single specifica-
tion and allow designers without AR expertise to create both
Vs and Vv in a single tool simultaneously: specify Vs and Vv,
test and debug, and deploy.

G2: Preview the visualization design in one platform—To
assure readability (C2) of an augmented static visualization,
the designer may need to work back-and-forth between the
desktop platform and AR devices (e.g., head-mounted dis-
plays, mobile handheld). This kind of cross-device workflow
is tedious and time-consuming. The authoring environment
should alleviate this burden as much as possible. Given that Vs
will be part of the reality, we can preview the Vv together with
the Vs on the desktop platform to simulate the AR scenario.
Moreover, some augmentations (e.g., Composite View) may
display data that is unknown during the process of visualiza-
tion design. Therefore, an authoring environment must allow
previewing the augmented static visualization.

G3: Provide automatic design support—The designer must
assure validity (C3) of an augmented static visualization. As
indicated by our design space, designing valid Extended View
is the most challenging since in which there are data dependen-
cies exist between the Vs and Vv. When new data is appended
and visualized by the Vv, a mismatch between the Vs and Vv
can easily happen due to inappropriate visual encodings, lead-
ing to an invalid augmented static visualization. When the
data is large, or the visual encodings are complex, it will be
difficult for the designer to verify and debug the inappropriate
design manually. Thus, the authoring environment should au-
tomatically verify the design and provide hints for debugging
inappropriate visual encodings.

USAGE SCENARIO
To illustrate how PapARVis Designer accomplishes the three
design goals and introduce the full workflow, we describe
how Bob, a hypothetical visualization designer, creates the
node-link diagram in Figure 7a.

Bob is a teaching assistant coordinate of the Computer Science
and Engineering department (CSE). He is asked to create a
poster for introducing the CSE to the prospective post-graduate
(PG) students. He plans to use a hierarchical visualization to
present the organization structure from the university to the
department as an overview, as well as the faculties in the
CSE for details. Since presenting the complete hierarchical

structure requires a large area, Bob has to hide some details in
the poster. Besides, some new faculties might join the CSE in
the future, making the current poster outdated. Considering
these issues, Bob decides to use PapARVis Designer to create
an augmented hierarchical visualization in the poster.

Bob opens PapARVis Designer and decides to choose a node-
link tree example to initialize his design. Bob loads the data
in the Vega code and defines the data to be displayed in AR in
the ar block (Figure 4a). For the uncertain child nodes (e.g.,
the new faculties), he defines a placeholder for them in the ar
block using wildcard characters. PapARVis Designer previews
how the tree visualization looks like in AR (Figure 4c) by
showing both the real and virtual parts which are indicated by
the orange and blue border boxes, respectively.

In the preview (Figure 4c), Bob notices a terrible mismatch
between the real and virtual visualizations. But he does not
know why this happens. His attention is then attracted by a
warning hint showing in the Vega code (Figure 6a). Reading
this hint, Bob notices that this mismatch is caused by the
“cluster” layout, which places leaf nodes of the tree at the same
depth. Thus, when new virtual nodes with different depths
are appended to the leaf nodes of the real tree, all the nodes
of the real tree need to be repositioned to make sure that the
added virtual leaf nodes can be placed at the same depth with
the real leaf nodes, leading to the mismatch. Following the
hint, he changes the layout from “cluster” to “tidy”, which
appends new nodes without changing the existing nodes. The
mismatch problem is then solved (Figure 4b).

Satisfied with the design, Bob clicks the publish button to
export his design. PapARVis Designer automatically separates
the real and virtual part and generates the tree for presenting
in reality with a QRCode that identifies the tree diagram (Fig-
ure 4d). For the virtual part, PapARVis Designer pushes the
Vega specification to a backend server for further processing,
including generating an AR reference image of the real tree so
that it can be recognized by AR viewers, converting the virtual
part into AR environments, and hosting it in a repository that
can be fetched by AR viewers. These details are handled by
a “black box” that Bob does not need to concern. Finally,
Bob uses an AR viewer on his mobile phone to scan the real
visualization and observe the virtual visualization (Figure 4e).

PAPARVIS DESIGNER
This section describes the design and implementation of Pa-
pARVis Designer, our authoring environment for augmented
static visualizations.

Workflow
PapARVis Designer creates both static and virtual visualiza-
tions. Instead of developing a tool that combines both the
functionalities of visualization tools for desktop and for AR
environments, we abstract the common part of them and pro-
pose a decoupled workflow (Figure 5). By separating the spec-
ification (i.e., designing visualizations) from the deployment
(i.e., presenting visualizations), our workflow allows designers
without AR expertise to create both Vs and Vv (G1) in a single
specification and leave the deployment to AR experts.

{
"$schema": "./schema/vega-ar.json",
"width" : 150, "height": 300,

"data": [{
"name": "tree",
"url": "./data/department.json",
"transform": [{

"type": "tree",
"method": "tidy", …
}…]

},{…
}],

"ar": {
"mode": "EV",
"data": [{
"name": "tree”,
”placeholder”: […
]

}]
},

1
2
3
4
5
6
7
8
12
17
18
19
32
33
34
35
36
37
38
90
91
92
93

AR Viewer

Reference
Processor

Parser
Generator

SpecHubVegaAR Editor

AR Specificationa

AR Previewb Static Visualization AR VisualizationeA broken designc
Image Full image

Vega Specification: Vega-AR Specification: Renderer: Log Level:

d

Figure 4. The main user interface and pipeline: 1) The designer specifies the static and virtual (in the ar block) visualization in the VegaAR Editor,
which preview the result on the desktop platform. 2) Then he publishes the specification to the SpecHub and exports the static part for printing. The
SpecHub will further process the specification and prepare all prerequisites for the augmented static visualization. 3) Finally, the audiences can use an
AR viewer to scan the static visualization, fetch the virtual part from the SpecHub, and combine them to display the augmented static visualization.

ARVis Converter

!"
!#$! !%

Capturer

Figure 5. A workflow creates both static and virtual visualizations: a
“stem” visualization ! can be rendered as a static visualization !" and
a virtual visualization !" , which are then combined as an augmented
static visualization !"# .

Specifically, our workflow adopts a browser/server architec-
ture. In the workflow, the designer uses a visualization au-
thoring tool to create a “stem” visualization which can then
be captured as a static visualization Vs. The designer can con-
tinue updating the “stem” visualization, similar to update a
web page, and use a converter to convert it into the virtual visu-
alization Vv. An AR viewer can be used to combine the Vs and
Vv to obtain the augmented static visualization. By this mean,
both Vs and Vv are created based on the same specification,
thus maintaining a high level of consistency.

We implement the workflow in PapARVis Designer (Figure 4),
which consists of three main components:

• VegaAR Editor is built based on a UI editor of Vega [24].
In VegaAR Editor, the designer can create a Vs following
the same practice in Vega and specify the Vv in an ar block,
which will be further introduced in the next section (Sec.5.2).
When finishing the creation, the designer can publish the
design to export the Vs (Figure 4d) and push the whole
specification, including the ar block, to SpecHub. Veg-
aAR Editor will generate a QRCode that links the Vs to the
specification on SpecHub.
• SpecHub is deployed on a cloud server to receive and host

the specifications from VegaAR Editor (i.e., like a piece
of code hosted on Github). Besides, it prepares all pre-
requisites for the AR visualization, such as processing the
specification of Vs to generate the AR reference image so
that Vs can be recognized by AR viewers, parsing the ar
block to render the Vv with the new data whenever a user
views it using an AR viewer.

• AR Viewer is the endpoint (i.e., browser) for audiences to
view the augmented static visualization. When scanning a
Vs, an AR viewer will identify the Vv based on its QRCode,
fetch its corresponding Vv from the SpecHub, and register
Vv onto Vs to present the augmented static visualization
(Figure 4e). The AR viewer is not platform-specific. In this
work, we have implemented three AR viewers on the iOS,
Android, and web-based platform, respectively.

With this workflow, designers can create augmented static
visualizations in one tool without digging into the AR details.

AR-Preview
We design AR-preview to avoid the frequently switching be-
tween devices (G2). Specifically, to preview Vv together with
Vs, the designer must explicitly specify the Vv during the cre-
ation, which is not supported by the current Vega grammar.
Thus, we extend the Vega grammar by adding an additional
configuration block ar (Figure 4a) to it. In the ar block, the
designer can explicitly specify the augmentation method, the
visual encodings, and the data of a Vv, no matter the data is
certain or uncertain:

• Certain. When the data is known (e.g., some detail infor-
mation cannot be presented due to the space limitation),
the designer can specify the Vv in the ar block, starting
from defining its augmentation method: 1) in Extended
View, the designer only needs to specify new data and which
datasets of the Vs to be appended, and can reuse other visual
encodings of the Vs; 2) in Composite View, the designer
can specify a new visualization in the ar block with new
datasets or with the existing datasets of the Vs; 3) in Small
Multiple, the designer only need to specify the new datasets
and the layout of the virtual small multiples in relation to
the Vs; 4) in Multiple View, the designer is allowed to create
a complete new visualization in the ar block and define its
placement with respect to the Vs.
• Uncertain. The data of the Vv could be uncertain during the

creation (e.g., the data can only be obtained in the future).

In this case, it will be arduous for the designer to imagine
the Vv. We provide a placeholder mechanism to allow
designers to generate mockup data using wildcard. In the
ar block, the designer can create placeholder datasets and
generate their data by specifying the data type (e.g., cate-
gorical, temporal, and quantitative), number of datum, and
ranges or potential options of the values of each column.

The physical space of the Vv is determined by the Vega specifi-
cation (e.g., set the canvas width to 500 unit), relative to the Vs.
By explicitly defining the Vv in the ar block, VegaAR Editor
will provide visual preview of the virtual content together with
the Vs, thus reducing the switching between devices.

Validator
An Extended View (see design space) can easily be invalid
given the data dependency between Vs and Vv (e.g., the pie
chart in Sec.3.1 and the tree diagram in Sec.4). When choosing
this augmentation method, PapARVis Designer automatically
verifies the dataflow of the visual design and provides hints
for debugging invalid visual encodings (G3).

!"#$!" !"#% !"#& '…

!"#$ ∪ !)#$!" ∪ !) !′"#% ∪ !)#% !"#& ∪ !)#& '…

Data Transform1 Transform2 Transform- Scales Vis

!"#% ≠ !′"#%

If new children are added to the leaf nodes of the original tree, the ’cluster’ method
should not be use in the transform. Instead, you can try the ‘tidy’ method.

Hints at the codea

/0

/12

Figure 6. Validate the visual design by comparing the dataflows, thus
enabling providing debug messages specific to a transform.

Instead of using a rule-based method, we propose to validate
the visualization by comparing the dataflow between a Vs and
an augmented static visualization. A general visualization
process of a dataset Dr can be summarized in Figure 6: Dr
will first be processed by a serials of data transforms and then
mapped to visual channels to construct the Vs. As demon-
strated in Sec.3.2, in a valid augmented static visualization,
the Vs should remain unchanged after appending the new data
Dv, which means its all intermediate states DT

r before the
visual mapping should also be unchanged. Thus, for each
data transform, we can compare the intermediate states of
the Vs and the augmented static visualization to see whether
the intermediate states derived from Dr changes. If an inter-
mediate state changes, for example D′T 2

r , DT 2
r , it means the

transform (i.e., Transform2) alters the Vr after appending new
data, thus leading to an invalid augmented static visualiza-
tion. Therefore, we can give the designer a hint that is specific
to a transform and further provide messages for fixing the
invalid visualization (e.g., Figure 6a) regardless of the com-
plexity of the visualization. For example, when trying to aug-
ment a treemap, the system warns avoid ’treemap’ when
new nodes are added to the internal nodes as this
would update the layout of the underlying treemap.

Implementation
The implementation of PapARVis Designer mainly consists
of three parts, namely, VegaAR Editor, SpecHub, and AR
viewers. VegaAR Editor is a web-based application that ex-
tends the Vega Editor [24], Vega Schema [25] (i.e., for the ar
block), and Vega Compiler [23] (i.e., for the AR-preview and
Validator). SpecHub is a NodeJs-based application that runs
on a cloud server. SpecHub also reuses the extended Vega
Compiler in VegaAR Editor to parse and generate Vv. We
have implemented AR viewers based on Vuforia [11] on three
different platforms, including iOS (iPhone8 Plus), Android
(Huawei P10), and web-based platform. All AR viewers only
provide minimal functionalities, including QRCode decoder,
AR image recognition, and 3D registration.

EXAMPLES AND SCENARIOS
Figure 1 and Figure 7 present examples varying in data type,
chart type, augmentation method, media, and purpose. We
summarize scenarios that can benefit from augmenting static
visualizations.

Overcoming space limitations—AR can extend a static visu-
alization where the space is scarce. For example, in Figure 1a,
given that much space of the newspaper is occupied by the
banner, the data journalism uses an augmented static visualiza-
tion to extend the canvas for visualization, thereby presenting
additional data. A similar usage can be found in the example
of poster (Figure 7a), leaflet (Figure 7f), name card (Figure 7i),
and resume (Figure 7j). Moreover, in the wall-sized timeline
in Figure 1b, it is difficult to physically extend the wall for
presenting updated data. By using augmented static visualiza-
tions, the designer can easily break through the limitation of
physical world and present more information.

Displaying new data—AR can update the static visualiza-
tions, thus providing the latest information and saving the cost
to recreate them. In real world, information can be updated
frequently while the materials to present the information might
not. Augmented static visualization is a promising way to re-
lieve the mismatch between the update cycle of information
and materials. Figure 1b presents a representative example
of using AR to update a wall-sized timeline, which has been
outdated for more than three years. Figure 7g demonstrates
a stock market book uses an augmented static visualization
to provide the latest S&P index data to help the reader better
understand the historical context. Generally users can also
use augmented static visualizations to keep their information
in static visualizations online. For example, Figure 7i is an
academic name card with google scholar citations that will not
be outdated after distributing.

Showing details—AR can empower static visualizations with
the capability to show details on demand. “Overview first,
zoom and filter, then details on demand” [20] is a well-known
information visualization guideline yet can hardly be followed
in static visualizations. Augmented static visualizations can
achieve this classic technique on static visualizations. For
example, Figure 7a presents the overview hierarchical archi-
tecture of a university and collapses the detail nodes into AR,
thus avoiding information overload. As shown in Figure 7h
and j, many tree diagrams can benefit from this feature.

Figure 7. Examples created by PapARVis Designer. a) - d) show the augmenting results of k). In e) - j), the sub-figures show the static visualizations.

Complementing additional data—For visualizations in pub-
lic spaces, augmented static visualizations can be used to over-
lay personal data. For example, in Figure 1c, by overlaying
the trajectories data onto a public map, the augmented static
visualization complements the geographical visualization with
the user’s own data, thus helping the user to understand his/her
movement pattern. Another example of complementing visu-
alizations is to provide supplemental information. The leaflet
advertisement in Figure 7f shows the salaries of other depart-
ments in AR for comparison purpose, since this extra informa-
tion is not the focus of the advertisement but can help readers
obtain the context information.

Protecting privacy—Augmented static visualizations can
protect individuals privacy. In Figure 7e, the teacher printed
the class’ summary statistics for an exam, overlaying a stu-
dent’s personal ranking in the augmented static visualization.
Similarly, Figure 7h shows a projected chart for the new stu-
dents to check their private information.

USER STUDY
We conducted a controlled user study to assess the usability
and the utility of PapARVis Designer. The study aimed to
evaluate whether visualization designers without AR expertise
could create augmented static visualizations using PapARVis
Designer and whether the two advanced features (AR-preview
and Validator) facilitated the creating process.

Baseline technique: As no comparable tool exists for a fair
baseline comparison, we provided two versions of PapARVis
Designer: a base mode (BASE) and a pro mode (PRO). PRO
provided full features of PapARVis Designer while the BASE
did not provide the AR-preview and Validator. To ensure a fair
comparison, BASE also provided the ar block (without the vi-
sual preview) for explicitly defining the virtual visualizations.

Tasks: The study simulated creating both static and virtual
visualizations. We took the poster example in Figure 7k (with-
out the visualizations) and asked participants to complete the
poster by creating the four visualizations (referred to as tasks
T1-T4). T1-T4 covered a wide range of data types and were
required to extend the visualization using an Extended View,
as we considered this extension is the most challenging and
hence expected strongest evidence for our tool. For each task,
participants were provided with the background information,
relevant Vega documents, an instruction to load the dataset,
and one or two Vega examples to initialize the design.

T1 Validity-tree required participants to visualize a hierarchi-
cal dataset about the university structure. The provided ex-
amples were a node-link tree and a treemap. The treemap
was ensured to be invalid for the dataset while the node-
link tree was invalid in default but can be fixed to be valid
by modifying one visual encoding. The purpose of this set-
ting was to assess whether the participant can choose the
proper example and debug the design in different modes.

T2 Validity-matrix had the same purpose as T1 but required
participants to visualize a network dataset about the col-
laboration among faculties in the college. The examples
provided a matrix diagram and a radial node-link graph.
The radial node-link graph was ensured to be invalid for

the dataset while the matrix diagrams was invalid in de-
fault but can be fixed by modifying one visual encoding.

T3 Occlusion required visualizing a temporal dataset about
the mean in-lab time of students. The provided examples
included a single line chart and a multiple line chart. Both
examples were valid without any corrections. We deliber-
ately put the text description of T3 on the right to see how
the participants deal with the potential occlusions due to
the AR extension in different modes.

T4 Unnoticeable required the participants to visualize a geo-
graphic dataset. The provided example was a contour map.
The example was invalid in default for the dataset but can
be corrected by modifying one visual encoding. However,
the default invalid design only led to an unnoticeable mis-
match, i.e., the mismatch of contours, between the Vs and
Vv. The mismatch is expected to be detected by Validator
and we want to see how the participants handle the conflict
between their observation and our hints.

The four tasks were divided into two groups (Validity-tree &
Occlusion vs. Validity-matrix & Unnoticeable) to balance the
workload in different modes. The materials we provided to
the participants can be found in the supplemental materials.

Participants and Apparatus: We recruited 12 participants
(8 male; age: 22-30, average 25.6), who had at least two-year
experience with Vega or D3 (since Vega is built based on D3)
and no expertise in AR programming (e.g., Unity). According
to the pre-study survey, all participants had more than two
years experience on data visualization (µ = 3.54,σ = 1.44).
Each participant received a gift card worth $14 at the beginning
of the session, independent of their performance. The study
was run in the lab, using a 15-inch laptop, or their own. A
5.5-inch iPhone8 Plus was provided to view the augmented
static visualization.

Instructions
20min

Training
20min

Base Mode
30min

Pro Training
10min

Pro Training
10min

Pro Mode
30min

Pro Mode
30min

Base Mode
30min

Post-Task
Questionnaire

10min

Figure 8. Participants completed four tasks, two in each of two condi-
tions (BASEor PRO). The conditions were counter-balanced across par-
ticipants, thus each participant completed only one path in this figure.

Procedure: The procedure of our study is summarised in Fig-
ure 8. We first introduced the purpose of the study, explained
the concept of Validity via examples (i.e., Figure 2), introduced
Vega, as well as how to create a visualization with PapARVis
Designer (introduction, 20min). Participants then were given
a step-by-step training (20min) instruction to reproduce the
two examples in Figure 2. Participants were encouraged to
ask questions and explore examples.

We performed a within-subject study on the four tasks, two in
each condition: BASE (30min) and PRO (30min). We counter-
balanced the order of the conditions across participants: the
PRO-group started with the PRO and then performed on BASE,
the BASE-group did start with BASE. Since a task cannot be
done in both conditions, we also counterbalanced the order
of the groups of tasks across participants. Before performing
with PRO, participants were given an instruction sheet of the
two advanced features (AR-preview and Validator) and were

encouraged to explore the PRO and ask questions (PRO train-
ing, 10min). Before each task, participants were provided
with the materials and encouraged to ask question about and
get familiar with the materials. A task was started when a
participant was confident and confirmed to begin and ended
when the participant confirmed finishing. Participants finished
with a post-study questionnaire (10min, adapted from [14]) in
which they rated their self-perceived efficiency, effectiveness,
and mental demand on a scale from 1 (“better in BASE”) to
7 (“better in PRO”). To collect subjective feedback for PRO,
participants rated its usability, usefulness, and satisfaction
and answered questions in a semi-structured interview. Each
session lasted approximately 1.5-2 hours.

Task Performance Measures: We recorded task completion
time and correctness for each task. A correct design a) does
not occlude its text description and b) is valid. All measures
were explicitly explained to the participants before the tasks.

Quantitative Results
Figure 9 shows the results with 95% confidence intervals (CIs).
Significance values are reported for p < .05(∗), p < .01(∗∗),
and p < .001(∗∗∗), abbreviated by the number of stars.

0

200

400

600

800

1000

T1 T2 T3 T4

Completion Time

5/6

6/6 6/6 6/6

1/6

2/6

4/6

2/6

0

0.2

0.4

0.6

0.8

1

T1 T2 T3 T4

CorrectRate

Pro
Base

Figure 9. Left: Average task completion time and 95% CIs across tasks.
Right: The correct rate across tasks.

Completion Time: Participants finished the tasks faster
with PRO (µ = 278s, 95%CI = [206,351]) than with BASE
(µ = 557s, 95%CI = [413,701]). Before more detailed exami-
nations, we first confirmed that all results of completion times
in each condition follow normal distribution using Anderson-
Darling test. Using an independent-samples t-test with a null
hypothesis that the participants perform equally fast in each
mode, we found that participants performed significantly faster
in PRO on Validity-tree (∗∗), Validity-matrix (∗), and Occlu-
sion (∗∗). No significant difference was observed for comple-
tion time with Unnoticeable (p = 0.14).

Correctness: Almost all the augmented static visualizations
(23/24) created in PRO were correct while far less were correct
with BASE (9/24). Correctness follows a Bernoulli distribution
(i.e., 1 vs. 0), and we used Binomial test with a null hypothesis
that an augmented static visualization has a equal chance to
be correct or wrong, by which significant positive effects were
observed on Validity-matrix (∗), Occlusion (∗), Unnoticeable
(∗) in PRO, and no significant effect was observed in others.

Post-Study Feedback: Anderson-Darling test reveals that the
post-study self-reported results (Figure 10) did not follow nor-
mal distribution. Thus, we used a one-sample non-parametric
Wilcoxon signed rank test with a null hypothesis that the result
is middle Likert scale value. We found significant positive

1 3 5 7

Means [95% CI]

6.75 [6.40, 7.10]

6.58 [6.29, 6.87]
1.67 [1.30, 2.04]

Efficiency
Effectiveness

Mental demand
Base Pro

Figure 10. Means and 95% CIs of post-study self-reported measures on
a scale from 1 (better in BASE) to 7 (better in PRO). Mental demand
accesses how much mental activity was required.

effects for participants’ reported efficiency (∗∗∗) and effective-
ness (∗∗) in PRO. For BASE, a negative effect was observed
for the participants’ self-reported mental demand (∗∗).

Qualitative Results
Usability: Generally, participants lauded the usability of our
system as easy to learn (µ = 6.50,95%CI = [6.11,6.88]) and
easy to use (µ = 6.33,95%CI = [5.96,6.70]) (Figure 11). P8
commented that “I have never tried Unity and AR things” but
PapARVis Designer “can help me quickly produce AR extensi-
ble visualizations.” When we asked the participants whether
they want more control of the AR details (e.g., visual effects),
participants preferred that the tool would be cost-effective and
remained simple.

Means [95% CI]

1 2 3 4 5 6 7

Satisfied with the linter

Satisfied with preview

Linter is useful

Preview is useful

Easy to use

Easy to learn 6.50 [6.11, 6.88]Easy to learn71
6.33 [5.96, 6.70]Easy to use71

AR-preview is useful
71

6.92 [6.75, 7.08]

Validator is useful
71

6.67 [6.30, 7.04]

Satisfied with AR-preview
71

6.75 [6.49, 7.01]

Satisfied with Validator
71

6.50 [6.11, 6.88]

Figure 11. Subjective feedback on the usability, showing means and 95%
CIs. Distributions are shown on the left.

Usefulness: As for the two features of our authoring environ-
ment, the participants commented positively and confirmed the
usefulness of AR-preview (µ = 6.92, 95% CI = [6.75,7.08])
and Validator (µ = 6.50, 95% CI = [6.11,6.88]). Although
we provided an AR viewer for participants to check their de-
sign in the study, participants didn’t use it frequently since

“AR-preview is enough thus no need to switch to the AR device”
(P2) and “it provides immediate feedback.” (P9). Participants
also agreed the usefulness of Validator. As pointed out by
P4, who had 6 years experiences on data visualizations, “the
Validator is really important for the debug”. Indeed, the par-
ticipants were able to finish the creation more quickly and
effectively with these two features, just like P10 noted that

“creation process is tedious without Validator and AR-preview.”

Satisfaction: The participants responded with a high user sat-
isfaction for AR-preview (µ = 6.75, 95% CI = [6.49,7.01])
and Validator (µ = 6.67, 95% CI = [6.30,7.04]). They said
AR-preview was “intuitive”. Other comments mentioned im-
provements for Validator, including “better highlight the prob-
lematic code” (P2) and “improve the error descriptions” (P7).

FINDINGS SUMMARY
Our study shows that all participants were able to create aug-
mented static visualizations using PapARVis Designer. We
discuss further observations and insights here.

Whose faults? AR or my design?—As discussed in Sec. 3.1,
inappropriate visual encoding may lead to a mismatch between
the static and virtual visualizations, e.g., the color, sizes, and
positions. During the study, we observed that some partici-
pants suspected that the AR viewer cannot correctly align the
Vv with Vs at the first time when there was a misalignment
happened between the Vs and Vv. Even after confirming with
us that there was nothing wrong with the AR part, some par-
ticipants still doubted that the AR device worked properly,
especially when designing without the help of Validator. In
practice, given that the AR details are similar to a “black box”
in our workflow, it is important to help designers distinguish
the error from AR and their designs.

Where am I? Reality or virtuality?—Creating augmented
visualizations requires designers to maintain two designs for Vs
and Vv in mind. Although AR-preview can alleviate this burden,
some participants could not consider both Vs and Vv simulta-
neously in the tasks. For example, some participants chose
the single line chart to present the temporal data in Occlusion.
When they discovered that the virtual part would occlude the
text description, they attempted to flip the Vs to a right-to-left
orientation and then struggled in this counter-intuitive design.
An interesting fact was that all the participants who chose the
single line chart and struggled in this issue had more than 3
years experiences in visualization design while those with less
than 3 years experiences directly chose the multiple line chart.
We suspected this was due to more experienced participants
having more clear routines. How to effectively help designers
closing the gap between reality and virtuality during creation
is one of the important future improvements. Allowing the
designer to create the visualization design in-situ rather than
on a desktop can be a potential solution.

What is the hint? Ignore or follow?—In PRO, our authoring
environment provides useful hints for debugging augmented
static visualizations. In the study, we observed that one partic-
ipant, the only one who failed in Validity-tree in PRO, ignored
any hints. In the interview, he said “I thought the hints are
useless so I didn’t read it [sic].” Yet, the majority of partic-
ipants followed the hints but admitted that they actually did
not know what was wrong with their designs. We also ob-
served that the hints occasionally confused the participants.
For instance, in Unnoticeable, the contours between the Vs
and Vv were not consistent, which was too subtle to be noticed
by the participants but can be detected by Validator. Thus,
participants got confused by the hints and spent relative long
time on Unnoticeable, which we believe was the reason of no
significant difference between BASE and PRO was observed
on Unnoticeable. We discussed this issue with the participants;
11 out of 12 agreed that the hints from Validator seemed as a
“strict mode warning” instead of an error.

What scenarios can augmented static visualizations be
used for?—We were interested in what kind of scenarios
the participants could envision augmented static visualizations.
In the interviews, all participants suggested that such kind of
visualizations can be used for public display, such as infor-
mation boards or park maps, and interactive artworks (P4-P7,
P11) in exhibitions or as gifts (P2, P5).

FUTURE WORK AND LIMITATIONS
Generalization to 3D and dynamic AR visualizations—
PapARVis Designer currently focuses on 2D static AR vi-
sualizations but it can be generalized to 3D and dynamic AR
visualizations. As has been proven successful in DXR [21],
Vega grammar can be extended from 2D to 3D visualizations.
It is possible to adopt the extension and design from DXR, thus
allowing designers to create 3D Vv in PapARVis Designer (ex-
amples can be found in https://github.com/PapARVis). Mean-
while, the Vega grammar inherently supports interactive visu-
alizations, providing opportunities to bring interactivity and
animation to static visualizations.

Multiple augmentations for collaborations—Our design so
far concentrates on augmenting one Vs on one AR device. A
promising but more challenging question is how to design
AR visualizations distributed across multiple devices to sup-
port collaborations. Challenges, for example, include how to
design cross-device interactions (e.g., HMDs prefer mid-air
gestures and handheld devices use touch), or how to support
collaborations without sacrificing privacy protection.

Design with scene understandings—In many real-world ex-
amples, the immediate environment influences readability and
how a visualization is read. For example, designers can create
Vv that adapts to the ambient light, visualizes in-situ tempera-
ture data, or adapt more deeply to the AR-Canvas [2]. Recent
progress in computer vision on visualizations [8] offers possi-
bilities for environment adaptive visualizations.

Study Limitations—Similar to other studies of authoring
tools [1, 12, 29], the sample size of our user study is small,
given that access to experts is naturally limited. Further evalua-
tion is thus suggested. PapARVis Designer currently generates
a QRCode along with a Vs when publishing, which size and
position can be configured in the ar block. While the QRCode
has a good usability and is a flag to attract audiences to scan,
it adds a superfluous component to the visualization. Future
study is required to optimize the QRCode by striking a balance
between functionality and aesthetics.

CONCLUSION
In this paper we presented and evaluated PapARVis Designer,
an authoring environment for augmenting static visualization
with virtual content. It integrates the workflow of creating both
static and virtual visualizations by extending Vega, a popular
visualization grammar. Two features are provided to facilitate
the creation process: AR-preview reduces the switching be-
tween platforms and Validator provides debugging hints. We
provided an exemplary gallery to demonstrate the expressive-
ness of PapARVis Designer as well as the broad application
prospect of augmented static visualizations. A user study
showed that PapARVis Designer enabled visualization design-
ers with no AR development experiences to create augmented
static visualizations. We have also shared and discussed the
insights from our study, which implies future research.

ACKNOWLEDGEMENTS
This project is partially supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project No. AoE/E-603/18).

REFERENCES
[1] Fereshteh Amini, Nathalie Henry Riche, Bongshin Lee,

Andres Monroy-Hernandez, and Pourang Irani. 2017.
Authoring Data-Driven Videos with DataClips. IEEE
Transactions on Visualization and Computer Graphics
23, 1 (2017), 501–510. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2598647

[2] Benjamin Bach, Ronell Sicat, Hanspeter Pfister, and
Aaron Quigley. 2017. Drawing into the AR-CANVAS:
Designing Embedded Visualizations for Augmented
Reality. In Proceedings of the Workshop on Immersive
Analytics of IEEE VIS.

[3] Mark Billinghurst, Hirokazu Kato, and Ivan Poupyrev.
2001. The MagicBook - Moving Seamlessly between
Reality and Virtuality. IEEE Computer Graphics and
Applications 21, 3 (2001), 6–8. DOI:
http://dx.doi.org/10.1109/38.920621

[4] Michael Bostock and Jeffrey Heer. 2009. Protovis: A
Graphical Toolkit for Visualization. IEEE Transactions
on Visualization and Computer Graphics 15, 6 (2009),
1121–1128. DOI:
http://dx.doi.org/10.1109/TVCG.2009.174

[5] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3: Data-Driven Documents. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (2011),
2301–2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

[6] Simon Butscher, Sebastian Hubenschmid, Jens Müller,
Johannes Fuchs, and Harald Reiterer. 2018. Clusters,
Trends, and Outliers: How Immersive Technologies Can
Facilitate the Collaborative Analysis of
Multidimensional Data. In Proceedings of the
Conference on Human Factors in Computing Systems
(CHI). ACM, 90. DOI:
http://dx.doi.org/10.1145/3173574.3173664

[7] Zhutian Chen, Yijia Su, Yifang Wang, Qianwen Wang,
Huamin Qu, and Yingcai Wu. 2019. MARVisT:
Authoring Glyph-based Visualization in Mobile
Augmented Reality. IEEE Transactions on Visualization
and Computer Graphics 14, 8 (2019). DOI:
http://dx.doi.org/10.1109/TVCG.2019.2892415

[8] Zhutian Chen, Yun Wang, Qianwen Wang, Yong Wang,
and Huamin Qu. 2020. Towards Automated Infographic
Design: Deep Learning-based Auto-Extraction of
Extensible Timeline. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2020),
917–926. DOI:
http://dx.doi.org/10.1109/TVCG.2019.2934810

[9] Maxime Cordeil, Andrew Cunningham, Benjamin Bach,
Christophe Hurter, Bruce H. Thomas, Kim Marriott, and
Tim Dwyer. 2019. IATK: An Immersive Analytics
Toolkit. In Proceedings of the Conference on Virtual
Reality and 3D User Interfaces (VR). 200–209. DOI:
http://dx.doi.org/10.1109/VR.2019.8797978

[10] Neven A. M. ElSayed, Bruce H. Thomas, Kim Marriott,
Julia Piantadosi, and Ross T. Smith. 2015. Situated

Analytics. In Proceedings of the Symposium on Big Data
Visual Analytics (BDVA). 96–103. DOI:
http://dx.doi.org/10.1109/BDVA.2015.7314302

[11] Vuforia Engine. 2019. Vuforia.
https://developer.vuforia.com/. (2019).

[12] Nam Wook Kim, Nathalie Henry Riche, Benjamin Bach,
Guanpeng Xu, Matthew Brehmer, Ken Hinckley, Michel
Pahud, Haijun Xia, Michael J Mcguffin, Hanspeter
Pfister, and Mathew Brehmer. 2019. DataToon: Drawing
Data Comics About Dynamic Networks with Pen +
Touch Interaction. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI). ACM, 12.
DOI:http://dx.doi.org/10.1145/3290605.3300335

[13] Zhen Li, Michelle Annett, Ken Hinckley, Karan Singh,
and Daniel Wigdor. 2019. HoloDoc: Enabling Mixed
Reality Workspaces that Harness Physical and Digital
Content. In Proceedings of the Conference on Human
Factors in Computing Systems (CHI). ACM, 1–14. DOI:
http://dx.doi.org/10.1145/3290605.3300917

[14] Arnold M Lund. 2001. Measuring Usability with the Use
Questionnaire12. Usability interface 8, 2 (2001), 3–6.

[15] Donghao Ren, Tobias Höllerer, and Xiaoru Yuan. 2014.
iVisDesigner: Expressive Interactive Design of
Information Visualizations. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (2014),
2092–2101. DOI:
http://dx.doi.org/10.1109/TVCG.2014.2346291

[16] Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An
Interactive Visualization Design Environment.
Computer Graphics Forum 33, 3 (2014), 351–360. DOI:
http://dx.doi.org/10.1111/cgf.12391

[17] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017),
341–350. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2599030

[18] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and
Jeffrey Heer. 2016. Reactive Vega: A Streaming
Dataflow Architecture for Declarative Interactive
Visualization. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (2016), 659–668. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2467091

[19] White Sean and Feiner Steven. 2009. SiteLens: Situated
Visualization Techniques for Urban Site Visits. In
Proceedings of the Conference on Human Factors in
Computing Systems (CHI). ACM, 1117. DOI:
http://dx.doi.org/10.1145/1518701.1518871

[20] B. Shneiderman. 1996. The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualizations. In
Proceedings of IEEE Symposium on Visual Languages.
336–343. DOI:
http://dx.doi.org/10.1109/VL.1996.545307

http://dx.doi.org/10.1109/TVCG.2016.2598647
http://dx.doi.org/10.1109/38.920621
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/3173574.3173664
http://dx.doi.org/10.1109/TVCG.2019.2892415
http://dx.doi.org/10.1109/TVCG.2019.2934810
http://dx.doi.org/10.1109/VR.2019.8797978
http://dx.doi.org/10.1109/BDVA.2015.7314302
https://developer.vuforia.com/
http://dx.doi.org/10.1145/3290605.3300335
http://dx.doi.org/10.1145/3290605.3300917
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1145/1518701.1518871
http://dx.doi.org/10.1109/VL.1996.545307

[21] Ronell Sicat, Jiabao Li, Junyoung Choi, Maxime
Cordeil, Won Ki Jeong, Benjamin Bach, and Hanspeter
Pfister. 2019. DXR: A Toolkit for Building Immersive
Data Visualizations. IEEE Transactions on Visualization
and Computer Graphics 25, 1 (2019), 715–725. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2865152

[22] Taeheon Kim and Bahador Saket and Alex Endert and
Blair MacIntyre. 2017. VisAR: Bringing Interactivity to
Static Data Visualizations through Augmented Reality.
In Proceedings of the Workshop on Immersive Analytics
of IEEE VIS.

[23] Vega Team. 2019a. Vega Compiler. https://github.com/
vega/vega/tree/master/packages/vega-parser. (2019).

[24] Vega Team. 2019b. Vega Editor.
https://github.com/vega/editor. (2019).

[25] Vega Team. 2019c. Vega Schema. https://github.com/
vega/vega/tree/master/packages/vega-schema. (2019).

[26] Pierre Wellner. 1991. The DigitalDesk Calculator:
Tangible Manipulation on A Desk Top Display. In
Proceedings of the Symposium on User Interface
Software and Technology (UIST). 27–33. DOI:
http://dx.doi.org/10.1145/120782.120785

[27] Wesley Willett, Yvonne Jansen, and Pierre Dragicevic.
2017. Embedded Data Representations. IEEE
Transactions on Visualization and Computer Graphics
23, 1 (2017), 461–470. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2598608

[28] Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2016. Voyager: Exploratory Analysis via Faceted
Browsing of Visualization Recommendations. IEEE
Transactions on Visualization and Computer Graphics
22, 1 (2016), 649–658. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2467191

[29] Haijun Xia, Nathalie Henry Riche, Fanny Chevalier,
Bruno De Araujo, and Daniel Wigdor. 2018. DataInk:
Direct and Creative Data-Oriented Drawing. In
Proceedings of the Conference on Human Factors in
Computing Systems (CHI). ACM, 223. DOI:
http://dx.doi.org/10.1145/3173574.3173797

[30] Mingqian Zhao, Yijia Su, Jian Zhao, Shaoyu Chen, and
Huamin Qu. 2017. Mobile Situated Analytics of
Ego-centric Network Data. In Proceedings of the
Symposium on Visualization of SIGGRAPH ASIA. ACM,
14:1–14:8. DOI:
http://dx.doi.org/10.1145/3139295.3139309

http://dx.doi.org/10.1109/TVCG.2018.2865152
https://github.com/vega/vega/tree/master/packages/vega-parser
https://github.com/vega/vega/tree/master/packages/vega-parser
https://github.com/vega/editor
https://github.com/vega/vega/tree/master/packages/vega-schema
https://github.com/vega/vega/tree/master/packages/vega-schema
http://dx.doi.org/10.1145/120782.120785
http://dx.doi.org/10.1109/TVCG.2016.2598608
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3139295.3139309

	Introduction
	Related Work
	AR Visualization
	Augmenting Physical Documents
	Visualization Authoring Tools

	Design Space
	What kind of augmented static visualizations is valid?
	How can a static visualization be augmented by AR?
	Design Goals

	Usage Scenario
	PAPARVIS DESIGNER
	Workflow
	AR-Preview
	Validator
	Implementation

	Examples and Scenarios
	User Study
	Quantitative Results
	Qualitative Results

	Findings Summary
	Future work and Limitations
	Conclusion
	Acknowledgements
	References

